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Abstract
This paper, a continuation of a previous one (Iwai 2007 J. Phys. A: Math.
Theor. 40 1361), studies the geometry of multi-qubit entanglement with respect
to bipartite partitions. An n-qubit system (C2)⊗n is isomorphic with C2� ⊗
C2m ∼= C2�×2m

, the linear space of 2� × 2m complex matrices, where � + m = n.
According to the isomorphism, the local transformation group U(2�) × U(2m)

acts on the space of normalized states in C2�×2m

. Let M and G denote the space of
normalized states and the local transformation group acting on M, respectively.
According to the orbit types, M is stratified into strata, among which a principal
stratum and the sets of separable states and maximally entangled states will be
identified. For C ∈ M ⊂ C2�×2m

, a function F(C) = det(I − CC∗) proves
to serve as a measure of entanglement, where I denotes the 2� × 2� identity
matrix. The F(C) attains the minimal and the maximal values, respectively, on
the sets of separable states and maximally entangled states, and further takes
no extremal values on the principal stratum. The F(C) projects to a function
on the factor space G\M . A naturally defined metric on M also projects to
that on G\M , which serves to measure the distance between the separable
states, F−1(0), and the states, F−1(k), of prescribed value k of measure. To
be precise, one has to restrict M to the principal stratum, when projecting the
metric. Three- and four-qubit systems will be studied intensively, and then
multi-qubit systems discussed.

PACS numbers: 02.40.Pc, 03.65.−w, 03.67.−a

1. Introduction

Since concurrence, which is defined to be a measure of entanglement, is closely related with
local transformation groups, invariants for the groups has been intensively studied algebraically
in particular [1–7]. Geometric study of entanglement has also been studied in various ways
[8–12]. This paper, a continuation of a previous paper [13], has an aim to study entanglement
from the viewpoint of Riemannian geometry.

An n-qubit system (C2)⊗n is isomorphic with C2� ⊗ C2m ∼= C2�×2m

, the linear space of
2� × 2m complex matrices with � + m = n, according to which the local transformation group
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G := U(2�) × U(2m) acts on the state space M ∼= S2n+1−1, the space of normalized states in
C2�×2m

. For a three-qubit system, one has � = 1 and m = 2, so that 2� = 2 and 2m = 4,
according to which the local transformation group is given by U(2) × U(4). For a four-qubit
system, there are two partitions such as (�,m) = (1, 3) and (�,m) = (2, 2), according to
which one has local transformation groups U(2) × U(8) and U(4) × U(4), respectively.

According to the orbit types of the G action, M is stratified into strata, among which a
principal stratum and the sets of separable states and maximally entangled states are identified.
For C ∈ M , a function F(C) = det(I − CC∗) proves to serve as a measure of entanglement.
In fact, it attains the minimal and the maximal values, respectively, on the sets of separable
states and maximally entangled states, and further takes no extremal values on the principal
stratum. Since the function F(C) is invariant under the G action, it projects to a function
on the factor space G\M . A naturally defined metric on M, which is invariant under the G
action as well, projects to a metric on G\M , which serves to measure the distance between
the separable states, F−1(0), and the states, F−1(k), of prescribed value k of the measure. To
be precise, one has to restrict M to the principal stratum Ṁ , when projecting the metric. It will
be shown that G\Ṁ is diffeomorphic with an open submanifold of the sphere S2�+1−1 and that
the metric defined through the submersion Ṁ → G\Ṁ is isometric to the canonical metric
on S2�+1−1. The distance between F−1(0) and F−1(k) is then measured explicitly. Three- and
four-qubit systems will be studied intensively. In particular, all types of orbits of G will be
identified.

The organization of this paper is as follows: section 2 contains setting up for geometric
study of entanglement with respect to a bipartite partition. A measure, F(C) = det(I −CC∗),
of entanglement and the local transformation group U(2�) × U(2m) are introduced. The state
space M is endowed with a natural Riemannian metric. According to the group action on M,
each tangent space to M is decomposed into a direct sum of vertical and horizontal subspaces,
where the definition of these subspaces will be given in section 2. The decomposition will
be used later for determining the metric on the factor space G\Ṁ . Section 3 deals with
three-qubits. The stratification of M ∼= S15 by the local transformation group U(2) × U(4)

is fully studied. M is stratified into three strata, among which are there the sets of separable
states and maximally entangled states. The metric on G\Ṁ is discussed in association with
the concurrence 2

√
det(CC∗) with C ∈ M . Note here that det(CC∗) = det(I − CC∗) in

the present case. In sections 4 and 5, four-qubit entanglement is studied according to the
isomorphism (C2)⊗4 ∼= C4 ⊗ C4 and (C2)⊗4 ∼= C2 ⊗ C8, respectively. Orbit types are
fully studied, and entanglement is measured by means of the metric on G\Ṁ in respective
cases. Section 6 contains the study of multi-qubits. The principal stratum Ṁ and the sets of
separable states and maximally entangled states are identified. It will be shown that G\Ṁ
is diffeomorphic with an open submanifold of the sphere S2�+1−1 and that the metric defined
on it is isometric with the canonical metric on S2�+1−1. The distance is measured between
the separable states, F−1(0), and the states, F−1(k), of prescribed value k of the measure.
Section 7 contains concluding remarks.

2. Setting up

We start with an n-qubit state of the form

� =
∑

j1,...,jn∈{0,1}
cj1···jn

ej1 ⊗ ej2 ⊗ · · · ⊗ ejn
, (2.1)

where
∑

j1,...,jn

∣∣cj1···jn

∣∣2 = 1, and ej are basis vectors of the standard basis of C2. If the
n-qubit state is separable, it is decomposed into a tensor product of �-qubit and the other
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m-qubit with � + m = n. With this in mind, we rewrite � as

� =
∑
A,K

cAKeA ⊗ eK, (2.2)

where the index A = j1 · · · j� and K = j�+1 · · · j�+m are binary integers, and

eA = ej1 ⊗ · · · ⊗ ej�
, eK = ej�+1 ⊗ · · · ej�+m

. (2.3)

Then, the map
(
cj1···jn

) �→ C = (cAK) provides the isomorphism

(C2)⊗n ∼= C2�×2m

, (2.4)

where C2�×2m

denotes the linear space of 2� × 2m complex matrices. Since the state � is
normalized, C is subject to the constraint tr(CC∗) = 1. Thus, the state space for an n-qubit
system is expressed as

M = {C ∈ C2�×2m |tr(CC∗) = 1}, (2.5)

which is diffeomorphic with the sphere S2n+1−1. M is endowed with a Riemannian metric
through

〈X1, X2〉 = 1
2 tr(X∗

1X2 + X∗
2X1), X1, X2 ∈ TCM, (2.6)

where TCM denotes the tangent space to M at C,

TCM = {X ∈ C2�×2m | tr(C∗X + X∗C) = 0}. (2.7)

Now, the state � is separable in the sense that � is a tensor product of the first �-qubit
and the last m-qubit, if and only if C is of rank 1. On account of the constraint tr(CC∗) = 1
and the fact that CC∗ is positive semi-definite, the matrix CC∗ is of rank 1, if and only if
det(I − CC∗) = 0, where I denotes the 2� × 2� identity matrix. Since C and CC∗ have the
same rank, we may take the function

F(C) = det(I − CC∗) (2.8)

as a measure of entanglement. By definition, one has F(C) = 0 for the separable states C.
Let λ1, . . . , λ2� be the eigenvalues of CC∗. Then, one has F(C) = (1 − λ1) · · · (1 − λ2� ),
which takes the maximal value when all of λj are equal to one another. In view of this and
the fact that CC∗ is associated with the partial trace of a density matrix |�〉〈�| with respect
to last m-qubit, the states on which F(C) takes the maximal value may be called maximally
entangled. However, it is to be noted that the bipartite partition is not unique, so that the
entanglement measure F(C) depends on bipartite partitions. We note further that the function
F(C) is a natural extension of the concurrence. In fact, for three-qubits with (�,m) = (1, 2),
one has det(I − CC∗) = det(CC∗), as is easily verified, and the concurrence for three-qubits
is defined to be 2

√
det(CC∗), according to [14].

The group G := U(2�) × U(2m) acting on C2� ⊗ C2m

determines an action of G on
M ⊂ C2�×2m

, which is described as

C �→ gChT , (g, h) ∈ U(2�) × U(2m), (2.9)

where the superscript T denotes the transposition. According to the orbit types of the G action,
M is stratified into strata, among which the sets of separable states and maximally entangled
states are identified. Further, it is easy to see that F(C) = det(I − CC∗) is invariant under
the G action. Hence, F(C) will project to a function on the factor space G\M . However, we
have to point out that G\M is not a manifold in general. From the viewpoint of Riemannian
geometry for entanglement measurement, we are interested in the principal stratum Ṁ and in
the Riemannian metric on Ṁ , which is also invariant under the G action, and then projects to
a metric on G\Ṁ .
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According to the action of G = U(2�) × U(2m) on M, the tangent space TCM is
decomposed into the sum of vertical and horizontal subspaces, where the vertical subspace VC

and the horizontal subspace HC of TCM are defined to be the tangent space to the orbit OC

through C and to be the orthogonal complement to VC with respect to the Riemannian metric
on M, respectively. From the definition, VC and HC are shown to be expressed as

VC = {ξC + CηT | ξ ∈ u(2�), η ∈ u(2m)} ∼= G/GC, (2.10)

HC = {X ∈ TCM | CX∗ − XC∗ = 0, C∗X − X∗C = 0}, (2.11)

where G and GC denote the Lie algebras of the group G and the isotropy subgroup GC ,
respectively. In particular, we will take up HC for C ∈ Ṁ in section 6 to determine a
Riemannian metric on G\Ṁ through the projection Ṁ → G\Ṁ . The entanglement will be
measured by means of this metric together with the function F projected onto G\Ṁ .

3. Three-qubit systems

3.1. Isotropy subgroups

We work with a three-qubit system with (�,m) = (1, 2). To study the isotropy subgroup of
G = U(2) × U(4) acting on the state space M ⊂ C2×4, we decompose C ∈ C2×4 singularly
into

C = UC0V
∗, (U, V ) ∈ U(2) × U(4), (3.1)

where

C0 = (�, 0), � = diag(µ1, µ2), µ1 � µ2 � 0, (3.2)

and µj are the singular values of C. If gC0h
T = C0 for (g, h) ∈ U(2) × U(4), then one has

UgU−1C(V hV T )T = C. This implies that the isotropy subgroups GC0 at C0 and GC at C are
isomorphic to each other. Hence, our task reduces to finding GC0 . Suppose that gC0h

T = C0.

We put h in the form, h = (h1 h2

h3 h4

)
, where h1, . . . , h4 ∈ C2×2. Then, we obtain g�hT

1 = � and

g�hT
3 = 0. If det � �= 0, then h3 = 0. From the condition hh∗ = I4, one obtains h2 = 0, and

h1h
∗
1 = h4h

∗
4 = I2. According to whether µ1 �= µ2 or µ1 = µ2, the condition g�hT

1 = �

with det � �= 0 implies that

g = diag(eiθ1 , eiθ2), h1 = g−1 or g ∈ U(2), h1 = (g−1)T . (3.3)

Hence, under the condition det � �= 0, according to whether µ1 �= µ2 or µ1 = µ2, one has

g =
(

eiθ1

eiθ2

)
, h =

e−iθ1

e−iθ2

h4

 , h4 ∈ U(2), (3.4)

or

g ∈ U(2), h =
(

(g−1)T

h4

)
, h4 ∈ U(2). (3.5)

Let det � = 0. Then, one has µ1 = 1 and µ2 = 0. We put h in the form h = (h0 h1

h2 h3

)
,

where h0 ∈ C, h1 ∈ C1×3, h2 ∈ C3×1 and h3 ∈ C3×3. Then, the condition gC0h
T = C0 yields

g =
(

eiθ1

eiθ2

)
, h =

(
e−iθ1

h3

)
, h3 ∈ U(3). (3.6)
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Thus, we obtain

GC
∼=


U(1) × U(1) × U(3), if det(CC∗) = 0,

U(1) × U(1) × U(2), if det(CC∗) �= 0, µ1(C) > µ2(C),

U(2) × U(2), if det(CC∗) �= 0, µ1(C) = µ2(C),

(3.7)

where µj(C) denote the singular values of C.

3.2. The tangent space decomposition

We write the vertical and horizontal subspaces, VC and HC , given in (2.10) and (2.11) with
(�,m) = (1, 2). We first look into VC . Since VC

∼= VC0
∼= G/GC0 , we deal with GC0 for C0

given in (3.2). If det � = 0, equation (3.6) implies that (ξ, η) ∈ GC0 is put in the form

ξ =
(

iθ1

iθ2

)
, η =

(−iθ1

ζ3

)
, ζ3 ∈ u(3). (3.8)

If det � = µ1µ2 �= 0 and if µ1 �= µ2, (ξ, η) ∈ GC0 proves, from (3.4), to be of the form

ξ =
(

iθ1

iθ2

)
, η =

−iθ1

−iθ2

ζ2

 , ζ2 ∈ u(2). (3.9)

If det � �= 0 and if µ1 = µ2, (ξ, η) ∈ GC0 becomes, from (3.5), of the form

ξ ∈ u(2), η =
(−ξT

ζ2

)
, ζ2 ∈ u(2). (3.10)

GC0 gives rise to vanishing tangent vectors, ξC0 +C0η
T = 0, in respective cases. VC0

∼= G/GC0

is now easy to obtain, but we do not need to give them explicitly.
We now seek for a basis of the horizontal subspace HC0 . Let X ∈ HC0 be of the form

X = (A,B) with A,B ∈ C2×2. Then, from C∗
0X − X∗C0 = 0, one has A∗� = �A and

�B = 0. If det � �= 0, one obtains B = 0. From C0X
∗ − XC∗

0 = 0, one obtains a similar
equation, A� = �A∗. A straightforward calculation then shows that among

A1 =
(

µ2 0
0 −µ1

)
, A2 =

(
0 −iµ2

iµ1 0

)
, A3 =

(
0 µ2

µ1 0

)
, (3.11)

A1 or A1, A2, A3 are solutions, depending on whether µ1 �= µ2 or µ1 = µ2. Hence,
Xk = (Ak, 0) ∈ HC0 , if Xk ∈ TC0M . However, we can easily verify that tr(C∗

0Xk +X∗
kC0) = 0,

a condition for Xk ∈ TC0M, k = 1, 2, 3. Thus, we have found that

X1 = (A1, 0) ∈ HC0 , if µ1 > µ2,

Xk = (Ak, 0) ∈ HC0 , k = 1, 2, 3, if µ1 = µ2.
(3.12)

In the case of det � = 0, one has � = diag(1, 0), so that C0 = (e1, 0) ∈ C2×4 with
e1 = (1, 0)T . We put Y ∈ TC0(M) in the form Y = (a, B) with a ∈ C2, B ∈ C2×3. Then,
the equations C∗

0Y − Y ∗C0 = 0 and C0Y
∗ − YC∗

0 = 0 together with tr(C∗
0Y + Y ∗C0) = 0 are

solved by

a = 0, B =
(

0 0 0
b1 b2 b3

)
, bk ∈ C. (3.13)

Thus we have found a basis of HC0 ,

Y1 = (0,e2, 0, 0), Y2 = (0, 0,e2, 0), Y3 = (0, 0, 0,e2),

Y4 = (0, ie2, 0, 0), Y5 = (0, 0, ie2, 0), Y6 = (0, 0, 0, ie2).
(3.14)



12166 T Iwai

Note that if µ1 = 1, µ2 = 0, then X1 = −Y1. It then turns out that

HC0 =


span{X1}, if det � �= 0, µ1 �= µ2,

span{X1, X2, X3}, if det � �= 0, µ1 = µ2,

span{Y1, . . . , Y6}, if det � = 0, or if µ1 = 1, µ2 = 0.

(3.15)

3.3. The stratification of the state space

According to (3.7), M is stratified into

M = M0 ∪ M1 ∪ M2, (3.16)

where

M0 = {C ∈ M | det(CC∗) = 0},
M1 = {C ∈ M | det(CC∗) �= 0, µ1(C) > µ2(C)},
M2 = {C ∈ M | det(CC∗) �= 0, µ1(C) = µ2(C)}.

(3.17)

M0 and M2 are the sets of separable states and maximally entangled states, respectively, with
respect to the bipartite partition (C2)⊗3 ∼= C2 ⊗ C4. M1 is the principal stratum.

We now study the topology of the strata Mk, k = 0, 1, 2. Let C ∈ M0. Then, C is
decomposed into C = UC0V

∗, where (U, V ) ∈ U(2) × U(4), and C0 = (�0, 0) with
�0 = diag(1, 0). We put matrices U and V in the form U = (u1,u2) and V = (v1, . . . ,v4),
respectively, where uj ∈ C2 and vk ∈ C4. In this notation, C is expressed as

C = u1v
∗
1. (3.18)

Since u1v
∗
1 = u1 eiθ e−iθv∗

1, and since u1 ∈ S3 ⊂ C2,v1 ∈ S7 ⊂ C4, an equivalence relation
is defined on S3 × S7 by

(u1,v1) ∼ (u1 eiθ ,v1 eiθ ). (3.19)

Hence, we find that

M0 ∼= S3 ×U(1) S7, (3.20)

which is viewed as a fiber bundle over S2 ∼= S3/SO(2) with fiber S7. Put another way, the set
of separable states with respect to the bipartite partition forms a submanifold diffeomorphic
with S3 ×U(1) S7.

We turn to M2. For C ∈ M2, one has C = UC0V
∗, where (U, V ) ∈ U(2) × U(4), and

C0 = (�2, 0) with �2 = 1√
2
diag(1, 1). Then C is put in the form

C = 1√
2
UV ∗

2 , V2 = (v1,v2). (3.21)

Since UV ∗
2 = UWW ∗V ∗

2 for W ∈ U(2), an equivalence relation is defined on U(2)×V2(C4)

through

(U, V2) ∼ (UW,V2W), (3.22)

where V2(C4) ∼= U(4)/U(2) denotes the Stiefel manifold of orthonormal two frames in C4.
Hence, we verify that

M2 ∼= U(2) ×U(2) V2(C4) ∼= V2(C4). (3.23)

This means that the set of maximally entangled states forms a submanifold diffeomorphic
with V2(C4).
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We take up C ∈ M1. Since C = UC0V
∗, where C0 = (�1, 0) and �1 = diag(µ1, µ2), C

is written as

C = U(�1, 0)V ∗ = µ1u1v
∗
1 + µ2u2v

∗
2, µ1 > µ2. (3.24)

Since µ1u1v
∗
1 + µ2u2v

∗
2 = µ1u1 eiθ1 e−iθ1v∗

1 + µ2u2 eiθ2 e−iθ2v∗
2, the equivalence relation

(U, V2) ∼ (Uh, V2h), h = diag(eiθ1 , eiθ2) ∈ U(1) × U(1) (3.25)

is defined on U(2)×V2(C4), where V2 = (v1,v2) are the same as in (3.21). Hence, we verify
that the orbit through C ∈ M1 is expressed as

OC
∼= U(2) ×U(1)×U(1) V2(C4), (3.26)

which is viewed as a fiber bundle over S2 ∼= U(2)/(U(1) × U(1)) with fiber V2(C4).
To get an idea of the topology of M1, we consider functions

F(C) = det(CC∗), f (C) = 2
√

det(CC∗), (3.27)

which are invariant under the action of U(2) × U(4), as is easily verified. Note also that
det(I − CC∗) = det(CC∗) on account of tr(CC∗) = 1 in this case, and that f (C) is equal
to the concurrence defined by Coffman, Kundu and Wootters [14]. Now, for µ2

k , the squared
singular values, one has

det(CC∗) = µ2
1µ

2
2 �

(
µ2

1 + µ2
2

2

)2

=
(

1

2
tr(CC∗)

)2

= 1

4
, (3.28)

where the equality occurs if and only if µ1 = µ2. This implies that the range of F is
0 � F(C) � 1/4, so that 0 � f (C) � 1. Thus we have found that the concurrence is a
surjective map onto the closed interval [0, 1]:

f : M −→ [0, 1]. (3.29)

In particular, one has

f (M0) = {0}, f (M2) = {1}. (3.30)

Moreover, for C ∈ M1, we have 0 < f (C) < 1.
We now assume that f (C1) = f (C2) or F(C1) = F(C2) for C1, C2 ∈ M1. Since

µ1(C1) > µ2(C1) and µ1(C2) > µ2(C2), and since tr(C1C
∗
1 ) = tr(C2C

∗
2 ) = 1, one obtains

µk(C1) = µk(C2), k = 1, 2. Hence, C1 and C2 are expressed as C1 = g1(�1, 0)h∗
1 and C2 =

g2(�1, 0)h∗
2, respectively, where (g1, h1), (g2, h2) ∈ U(2) × U(4) and �1 = diag(µ1, µ2)

with 1 > µ1 > µ2 > 0. From this, it follows that C2 = g2g
−1
1 C1

(
h2h

−1
1

)∗
, which implies that

C1 and C2 lie in the same orbit of G = U(2) × U(4). It then turns out that

(0, 1) ∼= G\M1, G = U(2) × U(4), (3.31)

where (0, 1) denotes an open interval. Hence,

M1 ∼= (0, 1) × U(2) ×U(1)×U(1) V2(C4). (3.32)

Equations (3.30) and (3.31) are put together to yield the homeomorphism

G\M ∼= [0, 1]. (3.33)
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3.4. Concurrence as a measure of entanglement

We find a metric on (0, 1) ∼= G\M1, which is defined through the projection f : M1 → (0, 1)

from that on M1 ⊂ M . For notational simplicity, we first treat the function F(C) = det(CC∗).
Since F(C) is invariant under the G = U(2) × U(4) action, the gradient ∇F should be
horizontal; (∇F)C ∈ HC . We verify this fact in what follows. The gradient ∇F is defined
through

dF = 〈∇F, dC〉 = 1
2 tr((∇F)∗dC + dC∗∇F), (3.34)

where dC should be subject to the constraint tr(dCC∗ + CdC∗) = 0. If det(CC∗) �= 0 or if
C ∈ M1, we obtain, leaving the constraint out of account,

dF = tr(F (C)(CC∗)−1CdC∗ + dCF(C)C∗(CC∗)−1). (3.35)

Taking into account the above equations along with the constraint tr(dCC∗ + CdC∗) = 0, we
are allowed to put ∇F in the form ∇F = 2F(C)(CC∗)−1C + 2λC, where λ is a Lagrange
multiplier. λ is determined by the condition that ∇F be tangent to M. A calculation results in
λ = −2F(C). Thus, we have found that

∇F = 2F(C)((CC∗)−1C − 2C), C ∈ M1. (3.36)

It is now easy to verify that ∇F satisfies the conditions given in (2.11).
We proceed to study a metric to be defined on G\M1 ∼= (0, 1). To begin with, we

calculate (dF)C0(X1) for X1 ∈ HC0 , where X1 is given in (3.12) and C0 = (�1, 0) with
�1 = diag(µ1, µ2). A straightforward calculation provides

(dF)C0(X1) = 〈
(∇F)C0 , X1

〉
C0

= f (C0)
√

1 − f (C0)2. (3.37)

For (dF)C(X̃1) with X̃1 = UX1V
∗ and C = UC0V

∗, we have (dF)C(X̃1) = (dF)C0(X1), so
that

(dF)C(X̃1) = r
√

1 − r2, (3.38)

where we have used the fact that f (C) = f (C0) = r . Since f = 2
√

F , one has df = dF/
√

F ,
and therefore X̃1 is pushed forward, by the tangent map f∗, to a vector field on the interval
0 < r < 1,

(f∗)C(X̃1) = 2
√

1 − r2
∂

∂r
. (3.39)

Now, the magnitude of X̃1 with respect to the Riemannian metric on M is given by

〈X̃1, X̃1〉C = 〈UX1V
∗, UX1V

∗〉C = 〈X1, X1〉C0 = 1. (3.40)

A metric dσ 2 is defined on the interval (0, 1) ∼= G\M1 through

dσ 2((f∗)C(X̃1), (f∗)C(X̃1)) = 〈X̃1, X̃1〉C = 1. (3.41)

Equations (3.39) and (3.41) are put together to provide

dσ 2

(
2
√

1 − r2
∂

∂r
, 2

√
1 − r2

∂

∂r

)
= 4(1 − r2) dσ 2

(
∂

∂r
,

∂

∂r

)
= 1, (3.42)

which shows that the metric dσ 2 is expressed as

dσ 2 = dr2

4(1 − r2)
. (3.43)
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The length of an interval [r1, r2] with 0 < r1 < r2 < 1 is then given by

1

2

∫ r2

r1

dr√
1 − r2

= 1

2
(arcsin r2 − arcsin r1). (3.44)

Letting r1 tend to 0, we find that 0 and r is distant by 1
2 arcsin r , which implies that the state

C ∈ M with concurrence r = f (C) is distant by 1
2 arcsin r from the separable states with

respect to the Riemannian metric on M.

3.5. A summary of section 3

Proposition 1. With respect to the bipartite partition, (C2)⊗3 ∼= C2 ⊗ C4 ∼= C2×4, of the
three-qubit, the state space M is stratified into three strata, according to the orbit types
for the G = U(2) × U(4) action. Two of the strata are the sets of separable states and
maximally entangled states and the other the principal stratum. The sets of separable
states and maximally entangled states are diffeomorphic with S3 ×U(1) S7 and with V2(C4),
respectively, and the principal stratum Ṁ (= M1) is the direct product of the interval (0, 1)

and U(2) ×U(1)×U(1) V2(C4). The metric defined on the factor space G\Ṁ ∼= (0, 1) is given
by (3.43) in terms of the concurrence r = 2

√
det(CC∗) with C ∈ M ⊂ C2×4. It then turns

out that the state C with concurrence r is distant by 1
2 arcsin r from the separable states.

4. Four-qubit systems: I

For a four-qubit system (C2)⊗4, there are two inequivalent isomorphisms, (C2)⊗4 ∼= C4 ⊗ C4

and (C2)⊗4 ∼= C2 ⊗ C8, with which sections 4 and 5 are concerned, respectively.

4.1. Isotropy subgroups

We study the isotropy subgroup of G = U(4) × U(4) acting on the state space M given in
(2.5) with (�,m) = (2, 2). The singular decomposition of C ∈ M ⊂ C4×4 takes the form
C = UC0V

∗, where C0 = diag(µ1, . . . , µ4) and (U, V ) ∈ U(4) × U(4). Since the isotropy
subgroups at C0 and C are isomorphic to each other, the types of isotropy subgroups are
determined at C0. Our task is then to solve the equation

gC0h
T = C0, C0 = diag(µ1, . . . , µ4), (g, h) ∈ U(4) × U(4), (4.1)

according to the types of the diagonal matrix C0.

(1) µ1 > µ2 > µ3 > µ4 > 0
Solutions to (4.1) are expressed as

g = diag(eiθ1 , . . . , eiθ4), h = g−1 = diag(e−iθ1 , . . . , e−iθ4), (4.2)

and the isotropy subgroup proves to be

GC0
∼= U(1) × U(1) × U(1) × U(1). (4.3)

(2) µ1 > µ2 > µ3 > µ4 = 0
Solutions to (4.1) are put in the form

g = diag(eiθ1 , eiθ2 , eiθ3 , eiθ4), h = diag(e−iθ1 , e−iθ2 , e−iθ3 , eiθ5), (4.4)

so that

GC0
∼= U(1) × U(1) × U(1) × U(1) × U(1). (4.5)
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(3) µ1 = µ2 > µ3 > µ4 > 0, µ1 > µ2 = µ3 > µ4 > 0, µ1 > µ2 > µ3 = µ4 > 0
In the case of µ1 > µ2 > µ3 = µ4 > 0, solutions to (4.1) are given by

g =
eiθ1

eiθ2

k

 , h =
e−iθ1

e−iθ2

k

 , k ∈ U(2), (4.6)

which implies, in the respective cases in question, that

GC0
∼= U(1) × U(1) × U(2). (4.7)

(4) µ1 > µ2 > µ3 = µ4 = 0
Solutions to (4.1) are put in the form

g =
eiθ1

eiθ2

k1

 , h =
e−iθ1

e−iθ2

k2

 , k1, k2 ∈ U(2), (4.8)

which implies that

GC0
∼= U(1) × U(1) × U(2) × U(2). (4.9)

(5) µ1 = µ2 > µ3 > µ4 = 0, µ1 > µ2 = µ3 > µ4 = 0
We take the case of µ1 = µ2 > µ3 > µ4 = 0. Solutions to (4.1) are of the form

g =
k

eiθ1

eiθ2

 , h =
k

e−iθ1

eiθ3

 , k ∈ U(2), (4.10)

and hence, in the present two cases, one obtains

GC0
∼= U(2) × U(1) × U(1) × U(1). (4.11)

(6) µ1 = µ2 > µ3 = µ4 > 0
Solutions to (4.1) take the form

g =
(

k1

k2

)
, h =

(
k1

k2

)
, k1, k2 ∈ U(2), (4.12)

so that

GC0
∼= U(2) × U(2). (4.13)

(7) µ1 = µ2 > µ3 = µ4 = 0
Solutions to (4.1) are written as

g =
(

k

g2

)
, h =

(
k

h2

)
, k, g2, h2 ∈ U(2), (4.14)

which implies that

GC0
∼= U(2) × U(2) × U(2). (4.15)

(8) µ1 = µ2 = µ3 > µ4 > 0, µ1 > µ2 = µ3 = µ4 > 0
In the case of µ1 > µ2 = µ3 = µ4 > 0, solutions to (4.1) are of the form

g =
(

eiθ

k3

)
, h =

(
e−iθ

k3

)
, k3 ∈ U(3), (4.16)

and the isotropy subgroup in each case under consideration proves to be

GC0
∼= U(1) × U(3). (4.17)
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(9) µ1 = µ2 = µ3 > µ4 = 0
Solutions to (4.1) takes the form

g =
(

k3

eiθ1

)
, h =

(
k3

eiθ2

)
, k3 ∈ U(3), (4.18)

so that

GC0
∼= U(3) × U(1) × U(1). (4.19)

(10) µ1 > µ2 = µ3 = µ4 = 0
Solutions to (4.1) turn out to be

g =
(

eiθ

g3

)
, h =

(
e−iθ

h3

)
, g3, h3 ∈ U(3), (4.20)

which provide

GC0
∼= U(1) × U(3) × U(3). (4.21)

(11) µ1 = µ2 = µ3 = µ4 = 1/2
As is easily seen, the isotropy subgroup is

GC0
∼= U(4). (4.22)

4.2. Orbits

According to the types of isotropy subgroups listed in section 4.1, the state space M is stratified
into strata on which orbits are of the same type. There are as many orbit types as those of the
isotropy subgroups. Since orbitsOC

∼= G/GC andOC0
∼= G/GC0 are diffeomorphic with each

other, where C = UC0V
∗ with (U, V ) ∈ U(4) × U(4) and C0 = diag(µ1, . . . , µ4), we treat

OC0 in what follows. To describe OC0 , we occasionally put the unitary matrices g, h ∈ U(4)

in the form g = (u1, . . . ,u4) and h = (v1, . . . ,v4), respectively, where uj · uk = δjk and
vj · vk = δjk .

(1) µ1 > µ2 > µ3 > µ4 > 0
The orbit through C0 is expressed as gC0h

T . Since gDC0(hD)T = gC0h
T for D =

diag(eiθ1 , . . . , eiθ4) ∈ U(1)×4, an equivalence relation is defined on U(4) × U(4) by

(gD, hD) ∼ (g, h), D ∈ U(1)×4. (4.23)

This implies that the orbit through C0 is described as a factor space,

U(4) ×U(1)×4 U(4), (4.24)

which is a fiber bundle over a flag manifold U(4)/U(1)×4 with fiber U(4), where U(1)×4

is the maximal torus of U(4).
(2) µ1 > µ2 > µ3 > µ4 = 0

The orbit through C0 is expressed as gC0h
T = µ1u1v

T
1 + µ2u2v

T
2 + µ3u3v

T
3 . Since

each ukv
T
k is invariant by the U(1) action (i.e., uk eiθk e−iθkvT

k = ukv
T
k ), an equivalence

relation is defined on V3(C4) × V3(C4) through

(U3D3, V3D3) ∼ (U3, V3), (4.25)

where U3 = (u1,u2,u3), V3 = (v1,v2,v3) and D3 = diag(eiθ1 , eiθ2 , eiθ3), and V3(C4)

denotes the Stiefel manifold of orthonormal three frames in C4. Thus, the orbit is
expressed as

V3(C4) ×U(1)×3 V3(C4), (4.26)

which is a fiber bundle over the manifold V3(C4)/U(1)×3 with fiber V3(C4).
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(3) µ1 = µ2 > µ3 > µ4 > 0, µ1 > µ2 = µ3 > µ4 > 0, µ1 > µ2 > µ3 = µ4 > 0
In the case of µ1 > µ2 > µ3 = µ4 > 0, the orbit through C0 is put in the form
gC0h

T = µ1u1v
T
1 + µ2u2v

T
2 + U2V

T
2 , where U2 = (u3,u4), V2 = (v3,v4). Since

u1 eiθ1(v1 e−iθ1)T = u1v
T
1 and since U2k(V2k)T = U2V

T
2 for k ∈ U(2), an equivalence

relation is defined on U(4) × U(4) through

(u1,u2, U2,v1,v2, V2) ∼ (u1 eiθ1 ,u2 eiθ2 , U2k,v1 e−iθ1 ,v2 e−iθ2 , V2k), (4.27)

where (u1,u2, U2) ∈ U(4) and (v1,v2, V2) ∈ U(4). Hence, in the three cases in
question, the orbit space is expressed as

U(4) ×U(1)×U(1)×U(2) U(4), (4.28)

which is a fiber bundle over the manifold U(4)/(U(1)×U(1)×U(2)) ∼= V2(C4)/(U(1)×
U(1)) with fiber U(4).

(4) µ1 > µ2 > µ3 = µ4 = 0
The orbit through C0 is expressed as gC0h

T = µ1u1v
T
1 + µ2u2v

T
2 , which determines an

equivalence relation on V2(C4) × V2(C4) through

(u1 eiθ1 ,u2 eiθ2 ,v1 e−iθ1 ,v2 e−iθ2) ∼ (u1,u2,v1,v2). (4.29)

Hence, the orbit is diffeomorphic with

V2(C4) ×U(1)×U(1) V2(C4), (4.30)

which is a fiber bundle over the manifold V2(C4)/(U(1) × U(1)) with fiber V2(C4).
(5) µ1 = µ2 > µ3 > µ4 = 0, µ1 > µ2 = µ3 > µ4 = 0

We take the case of µ1 = µ2 > µ3 > µ4 = 0. Then, the orbit through C0 is expressed as
gC0h

T = µ1U2V
T

2 + µ3u3v
T
3 , where U2 = (u1,u2), V2 = (v1,v2). This determines an

equivalence relation on V3(C4) × V3(C4) through

(U2k,u3 eiθ , V2k,v3 e−iθ ) ∼ (U2,u3, V2,v3), (k, eiθ ) ∈ U(2) × U(1), (4.31)

and hence the orbit is expressed, in each case in question, as

V3(C4) ×U(2)×U(1) V3(C4), (4.32)

which is a fiber bundle over V3(C4)/(U(2) × U(1)) with fiber V3(C4).
(6) µ1 = µ2 > µ3 = µ4 > 0

The orbit through C0 takes the form gC0h
T = µ1U2V

T
2 + µ3U

′
2(V

′
3)

T , where U2 =
(u1,u2), U

′
2 = (u3,u4), V2 = (v1,v2) and V ′

2 = (v3,v4). Hence, an equivalence
relation is defined on U(4) × U(4) through

(U2k1, U
′
2k2, V2k1, V

′
2k2) ∼ (U2, U

′
2, V2, V

′
2), (k1, k2) ∈ U(2) × U(2), (4.33)

so that the orbit is put in the form

U(4) ×U(2)×U(2) U(4), (4.34)

which is a fiber bundle over the Grassmann manifold U(4)/(U(2) × U(2)) ∼= G2(C4)

with fiber U(4).
(7) µ1 = µ2 > µ3 = µ4 = 0

The orbit through C0 takes the form gC0h
T = µ1U2V

T
2 , which determines an equivalence

relation on V2(C4) × V2(C4) through

(U2k, V2k) ∼ (U2, V2), k ∈ U(2). (4.35)

Hence, we have the orbit

V2(C4) ×U(2) V2(C4), (4.36)

which is a fiber bundle over the Grassmann manifold V2(C4)/U(2) ∼= G2(C4) with
fiber V2(C4).
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(8) µ1 = µ2 = µ3 > µ4 > 0, µ1 > µ2 = µ3 = µ4 > 0
We treat the case of µ1 = µ2 = µ3 > µ4 > 0. The orbit through C0 is given by
gC0h

T = µ1U3V
T

3 + µ4u4v
T
4 , where U3 = (u1,u2,u3) and V3 = (v1,v2,v3). Then,

an equivalence relation is defined on U(4) × U(4) through

(U3,u4, V3,v4) ∼ (U3h,u4 eiθ , V3h,v4 e−iθ ), (h, eiθ ) ∈ U(3) × U(1), (4.37)

where (U3,u4) ∈ U(4) and (V3,v4) ∈ U(4). In each case in question, the orbit is
expressed as

U(4) ×U(3)×U(1) U(4), (4.38)

which is a fiber bundle over the Grassmann manifold U(4)/(U(3) × U(1)) ∼= G3(C4)

with fiber U(4).
(9) µ1 = µ2 = µ3 > µ4 = 0

We have the orbit of the form gC0h
T = µ1U3V

T
3 . An equivalence relation is then defined

on V3(C4) × V3(C4) through

(U3k3, V3k3) ∼ (U3, V3), k3 ∈ U(3), (4.39)

so that the orbit is described as

V3(C4) ×U(3) V3(C4), (4.40)

which is a fiber bundle over the Grassmann manifold V3(C4)/U(3) ∼= G3(C4) with fiber
V3(C4).

(10) µ1 > µ2 = µ3 = µ4 = 0
The orbit through C0 = diag(1, 0, 0, 0) proves to be gC0h

T = u1v
T
1 . Since |u1| =

|v1| = 1 and since u1 eiθe−iθvT
1 = u1v

T
1 , we have the equivalence relation

(u1,v1) ∼ (u1 eiθ ,v1 e−iθ ) (4.41)

on the product space S7 × S7. The orbit through C0 is then diffeomorphic with

S7 ×U(1) S7, (4.42)

which is a fiber bundle over S7/U(1) ∼= CP 3 with fiber S7.
(11) µ1 = µ2 = µ3 = µ4 = 1/2

The orbit through C0 = 1
2I is the set of all gC0h

T = 1
2ghT with (g, h) ∈ U(4) × U(4),

which is diffeomorphic with U(4). The orbit is then

U(4) ×U(4) U(4) ∼= U(4). (4.43)

Among those orbits obtained above, we have found the sets of separable states and
maximally entangled states with respect to the isomorphism (C2)⊗4 ∼= C4 ⊗ C4, which are
diffeomorphic with S7 ×U(1) S7 and U(4), respectively.

4.3. The tangent space decomposition

The dimension of the vertical subspace VC
∼= G/GC depends on the types of the isotropy

subgroups GC . Since we have already obtained the isotropy subgroups, we can easily discuss
VC

∼= G/GC , but we will not look into VC .
We turn to the horizontal subspaces HC . If C and C0 = diag(µ1, . . . , µ4) are sitting on

the same orbit of G,HC and HC0 are isomorphic to each other. In view of this, we find HC0

by solving the equations

A∗C0 = C0A, AC0 = C0A
∗, A ∈ C4×4. (4.44)
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These equations are written componentwise as akjµk = µjajk and ajkµk = µjakj . We will
give solutions only for several types of singular values.

If µ1 > µ2 > µ3 > µ4 > 0, solutions to (4.44) prove to be

A = diag(a1, . . . , a4), ak = ak, k = 1, . . . , 4. (4.45)

Since A is tangent to M at C0, A should satisfy the condition tr(A∗C0 + C∗
0A) = 0, so that ai

should be subject to

4∑
k=1

µkak = 0. (4.46)

There are three linearly independent solutions satisfying the above condition, and therefore a
basis of HC0 is given, for example, by

X1 = diag(µ2,−µ1, µ4,−µ3), (4.47)

X2 = diag(µ3,−µ4,−µ1, µ2), (4.48)

X3 = diag(µ4, µ3,−µ2,−µ1). (4.49)

As is easily verified, these vectors are orthogonal to one another with respect to the Riemannian
metric on M:

〈Xk,Xj 〉C0 = 1
2 tr(X∗

kXj + X∗
j Xk) = δkj . (4.50)

In the case of µ1 > µ2 > µ3 > µ4 = 0, we obtain, in place of (4.45),

A = diag(a1, a2, a3, a4 + ia5), aj = aj , j = 1, . . . , 4, 5. (4.51)

The tangential condition tr(A∗C0 + C∗
0A) = 0 results in the same equation as (4.46). In

addition to (4.47)–(4.49), we have another horizontal vector independent of them,

X4 = diag(0, 0, 0, i), i = √−1. (4.52)

The set of vectors X1, X2, X3, X4 forms a basis of HC0 at C0 = diag(µ1, µ2, µ3, 0) with
µ1 > µ2 > µ3 > 0.

In the cases of µ1 > µ2 > µ3 = µ4 > 0 and µ1 > µ2 = µ3 = µ4 > 0, the condition
ajkµk = µjakj implies that ajj = ajj for j = 1, 2 and ajk = akj for j, k ∈ {3, 4} and
that ajj = ajj for j = 1 and ajk = akj for j, k ∈ {2, 3, 4}, respectively. In both cases, the
condition tr(A∗C0 + C∗

0A) = 0 provides
∑

akkµk = 0. Hence, the horizontal vectors are,
respectively, expressed as

A =


a1

a2

a3 a34

a34 a4

 , ak = ak,

4∑
k=1

akµk = 0, µ1 > µ2 > µ3 = µ4 > 0,

(4.53)

and as

A =


a1

a2 a23 a24

a23 a3 a34

a24 a34 a4

 , ak = ak,

4∑
k=1

akµk = 0, µ1 > µ2 = µ3 = µ4 > 0.

(4.54)
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4.4. Measurement of entanglement

According to the orbit types discussed in section 4.2, M is stratified into strata. The set of C
such that all the singular values µk(C) are positive and distinct is a principal stratum, which
we denote by Ṁ . The factor space G\Ṁ will prove to be diffeomorphic with

P3 :=
{

x = (xk) ∈ R4

∣∣∣∣∣
4∑

k=1

x2
k = 1, x1 > · · · > x4 > 0

}
, (4.55)

which is an open submanifold of the sphere S3 ⊂ R4. The projection map is given by

π3 : Ṁ → G\Ṁ ∼= P3;C �→ µ(C) = (µk(C)), (4.56)

where µ(C) denote the vector consisting of the singular values of C with µ1(C) > µ2(C) >

µ3(C) > µ4(C) > 0. As is easily seen, this map is surjective onto P3. We now assume that
µ(C1) = µ(C2) for C1, C2 ∈ Ṁ . Then, there exists (g1, h1), (g2, h2) ∈ U(4)×U(4) such that
C1 = g1C0h

T
1 , C2 = g2C0h

T
2 , where C0 is the diagonal matrix with singular values as diagonal

elements. These equations imply that C1 and C2 lie in the same orbit of G = U(4) × U(4)

through C0. Hence, the inverse image of p ∈ P3 is an orbit of G, which implies that
G\Ṁ ∼= P3.

We are interested in a metric to be defined on G\Ṁ . From (4.45) and (4.46), the horizontal
subspace HC0 at C0 = diag(µ1, . . . , µ4) with µ1 > · · · > µ4 > 0 and

∑4
j=1 µ2

j = 1 is given
by

HC0 =
diag(a1, . . . , a4)

∣∣∣∣∣aj ∈ R,

4∑
j=1

µjaj = 0

 . (4.57)

Since the horizontal subspace HC
∼= HC0 projects isomorphically onto the tangent space to

the factor space G\Ṁ at π3(C), and since the metric on Ṁ is invariant under the action of
G = U(4) × U(4), the metric on Ṁ projects to that on G\Ṁ through

dσ 2((π3∗)C(X̃j ), (π3∗)C(X̃k)) = 〈X̃j , X̃k〉C = 〈Xj,Xk〉C0 = δjk, (4.58)

where X̃j = UXjV
∗ with C = UC0V

∗ and Xj are tangent vectors given in (4.47)–(4.49). In
view of (4.57) and (4.58), the metric dσ 2 is also written as

dσ 2 = tr(dC0 dC∗
0 ) =

4∑
j=1

dµ2
j ,

1

2
tr(dC0C

∗
0 + C0dC∗

0 ) =
4∑

j=1

µj dµj = 0, (4.59)

where dC0 = diag(dµ1, . . . , dµ4). In other words, the metric dσ 2 defined on G\Ṁ is nothing
but the metric on P3 induced from the standard metric on S3. We note that the metric on P3

can be extended to the closure P 3 of P3.
As was stated in the introduction, the function F(C) = det(I −CC∗) serves as a measure

of entanglement. As is easily verified, the range of F is 0 � F(C) � (3/4)4. In particular,
for the separable and maximally entangled states, we have F(C) = 0 and F(C) = (3/4)4,
respectively. In view of this, we may define the concurrence of C to be f (C) = (4/3)F (C)1/4.
Then, the range of f becomes 0 � f (C) � 1. However, we work with F(C) for simplicity.

Since F is invariant under the G action, it projects to a function F̃ on P 3 through
F̃ (µ(C)) = F(C). The sets of separable states and maximally entangled states are mapped to
e1 = (1, 0, 0, 0)T and

(
1
2 , 1

2 , 1
2 , 1

2

)T
by π3, respectively, which are located in the boundary of

P3. We wish to measure the distance between e1 and the level set F̃−1(k) with 0 � k � (3/4)4.
Since the metric on P 3 ⊂ S3 is the standard one, the distance between e1 and x ∈ P 3 is given
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by arccos(e1 · x) = arccos x1, so that the distance in question is determined by minimizing
arccos x1. Put another way, our problem is reduced to the following:

maximize x1, subject to
4∑

j=1

x2
j = 1, F̃ (x) = k, (4.60)

where we have not taken into account the restriction x1 � x2 � x3 � x4 � 0, which will be
considered soon after. Introducing Lagrange’s multipliers λ and µ, we work with the function

x1 + λ

 4∑
j=1

x2
j − 1

 + µ
((

1 − x2
1

) · · · (1 − x2
4

) − k
)
. (4.61)

The condition for this function to take an extremum is easy to write after differentiation, from
which we can find that x2 = x3 = x4, a condition subject to the restriction stated above. When
this occurs, one has x2

1 + · · · + x2
4 = x2

1 + 3x2
2 = 1, so that

k = (
1 − x2

1

)(
1 − x2

2

)3 = 3x2
2

(
1 − x2

2

)3
, (4.62)

which determines x2 as a function of k. There are two solutions, x+
2 (k) and x−

2 (k), to the above
equation in general, where x+

2 (k) is greater than or equal to 1/2 and x−
2 (k) less than or equal

to 1/2. For these values, we have x±
1 (k) =

√
1 − 3

(
x±

2 (k)
)2

. This implies that x−
2 (k) yields

the maximum, x−
1 (k), of x1, so that the distance is given by

arccos
√

1 − 3(x−
2 (k))2, (4.63)

where x−
2 (k) denotes the smaller one of solutions to (4.62). In particular, if x−

2 (k) = 1/2 with

k = (3/4)4, we have the distance arccos
√

1 − 3(x−
2 (k))2 = arccos(1/2) = π/3, which is the

distance between e1 and x = (
1
2 , . . . , 1

2

)T
. In other words, the distance between the separable

states and the maximally entangled states is π/3 with respect to the canonical Riemannian
metric on the state space.

4.5. A summary of section 4

Proposition 2. With respect to the bipartite partition, (C2)⊗4 ∼= C4 ⊗ C4 ∼= C4×4, of the
four-qubit, the state space M is stratified into eleven strata, according to the orbit types of the
G = U(4)×U(4) action, as is listed in section 4.2. Two of the strata are the sets of separable
states and maximally entangled states, which are diffeomorphic with S7 ×U(1) S7 and U(4),
respectively. The orbit space G\Ṁ for the principal stratum Ṁ is diffeomorphic with an open
submanifold P3 of the sphere S3, where P3 is given by (4.55). As is given in (4.59), the metric
defined on P3 through the submersion π3 : Ṁ → P3 is isometric with the canonical metric on
the sphere S3 restricted to P3. Let F(C) be the entanglement measure defined in (2.8) with
C ∈ M ⊂ C4×4. This metric can serve to measure the distance between the level sets F−1(k)

and F−1(0), where 0 � k � (3/4)4 and F−1(0) is the set of separable states. The resultant
distance is given in (4.63).

5. Four-qubit systems: II

5.1. Isotropy subgroups

The group G = U(2) × U(8) acts on the state space M for a four-qubit system in the manner
(2.9) with (�,m) = (1, 3). Isotropy subgroups can be found in a similar manner to that in
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subsection 3.1. Like (3.7), the isotropy subgroups are classified into three types:

GC
∼=


U(1) × U(1) × U(7), if det(CC∗) = 0,

U(1) × U(1) × U(6), if det(CC∗) �= 0, µ1(C) > µ2(C),

U(2) × U(6), if det(CC∗) �= 0, µ1(C) = µ2(C),

(5.1)

where µj(C) denote the singular values of C.

5.2. Orbits

According to the types of isotropy subgroups listed above, the state space M is stratified into
strata. Orbit types are also classified accordingly. As in the preceding cases, we have only
to find the orbit through C0 = (�, 0) ∈ C2×8,� = diag(µ1, µ2), for each type of �. In
what follows, we occasionally put the unitary matrices g ∈ U(2), h ∈ U(8) in the form
g = (u1,u2) and h = (v1, . . . ,v8), respectively, where uj · uk = δjk and v� · vm = δ�m.

(1) µ1 > µ2 > 0
The orbit through C0 is expressed as gC0h

T = µ1u1v
T
1 + µ2u2v

T
2 . Since u1v

T
1 =

u1 eiθ1 e−iθ1vT
1 and u2v

T
2 = u2 eiθ2 e−iθ2vT

2 , one can define an equivalence relation on
U(2) × V2(C8) by

(u1,u2,v1,v2) ∼ (u1 eiθ1 ,u2 eiθ2 ,v1 e−iθ1 ,v2 e−iθ2). (5.2)

Thus the orbit space is put in the form

U(2) ×U(1)×U(1) V2(C8), (5.3)

which is a fiber bundle over the sphere S2 ∼= U(2)/(U(1) × U(1)) with fiber V2(C8).

(2) µ1 = µ2 = 1/
√

2
The orbit through C0 is given by gC0h

T = 1√
2
UV T

2 , where U = (u1,u2) and V2 =
(v1,v2). From this, an equivalence relation is defined on U(2) × V2(C8) through

(Uk, V2k) ∼ (U, V2), k ∈ U(2). (5.4)

Hence, the orbit is put in the form

U(2) ×U(2) V2(C8) ∼= V2(C8). (5.5)

(3) µ1 > µ2 = 0
The orbit is expressed as gC0h

T = u1v
T
1 , which determines an equivalence relation on

S3 × S15 through

(u1 eiθ ,v1 e−iθ ) ∼ (u1,v1), (5.6)

so that the orbit is written as

S3 ×U(1) S15, (5.7)

which is a fiber bundle over the sphere S2 ∼= S3/U(1) with fiber S15.
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5.3. The tangent space decomposition

From the isotropy subgroups obtained in subsection 5.1, the vertical subspaces VC
∼= G/GC

are easy to obtain. We will not look into respective types of VC . We turn to the horizontal
subspaces HC

∼= HC0 . To find basis vectors of HC0 , we have to solve the equations

X∗C0 = C0X, XC0 = C0X
∗, (5.8)

where

C0 = (�, 0), � = diag(µ1, µ2), 0 ∈ C2×6. (5.9)

The calculation results in the following: suppose det � �= 0, and let

A1 =
(

µ2 0
0 −µ1

)
, A2 =

(
0 −iµ2

iµ1 0

)
, A3 =

(
0 µ2

µ1 0

)
. (5.10)

Then, a basis of horizontal vectors is given by

X1 = (A1, 0) ∈ HC0 , if µ1 > µ2 > 0, (5.11a)

Xk = (Ak, 0) ∈ HC0 , k = 1, 2, 3, if µ1 = µ2 �= 0. (5.11b)

If det � = 0, 14 independent vectors are found as in (3.14).

5.4. Measurement of entanglement

Discussion runs in parallel with that in section 4.4. The set of C such that µ1(C) > µ2(C) > 0
is the principal stratum in M, which we denote by Ṁ . The factor space G\Ṁ proves to be
diffeomorphic with

P1 :=
x = (xj ) ∈ R2

∣∣∣∣∣
2∑

j=1

x2
j = 1, x1 > x2 > 0

 , (5.12)

which is part of the circle S1 ⊂ R2. The projection map is given by

π1 : Ṁ → P ∼= G\Ṁ;C �→ µ(C) = (µj (C)), (5.13)

where µ(C) denote the vector consisting of the singular values of C with µ1(C) > µ2(C) > 0.
The proof runs in parallel with that in subsection 4.4.

We are interested in a metric to be defined on G\Ṁ . As is seen already, the horizontal
subspace HC0 at C0 = (�, 0) with � = diag(µ1, µ2) and µ1 > µ2 > 0 is spanned by X1

given in (5.11a). If C0 and C are sitting in the same orbit, HC0 and HC are isomorphic to each
other. Since the horizontal subspace HC projects isomorphically onto the tangent space to the
factor space G\Ṁ at π1(C), the metric on Ṁ , which is invariant under the G = U(2) × U(8)

action, projects to G\Ṁ , and is expressed, like (4.59), as

tr(dC0 dC∗
0 ) =

2∑
j=1

dµ2
j , tr(dC0C

∗
0 + C0dC∗

0 ) =
2∑

j=1

µj dµj = 0. (5.14)

In other words, the metric defined on the factor space is nothing but the metric on P1 induced
from the standard metric on S1. The metric on P1 can be extended to the boundary of
P1. If we introduce the parameter θ by x1 = cos θ, x2 = sin θ with 0 � θ � π

4 , the
induced metric is expressed as dθ2, which is a trivial fact. We introduce the concurrence r
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by r = 2
√

det(CC∗) = 2x1x2, where we have to note that det(I − CC∗) = det(CC∗) in this
case. Thus, the metric on P1 turns out to be put in the form

dθ2 = dr2

4(1 − r2)
, (5.15)

which is the same as that in (3.43). The distance between the separable states and the states
of concurrence r is of course given by θ = 1

2 arcsin r .

5.5. A summary of section 5

Proposition 3. With respect to the bipartite partition, (C2)⊗4 ∼= C2 ⊗ C8 ∼= C2×8, of the four-
qubit, the state space M is stratified into three strata, as is listed in section 5.2, according to
the G = U(2)×U(8) action. Two of the strata are the sets of separable states and maximally
entangled states, which are diffeomorphic with S3 ×U(1) S15 and V2(C8), respectively. The
orbit space G\Ṁ of the principal stratum Ṁ is diffeomorphic with an open submanifold P1

of the circle S1, where P1 is given in (5.12). The metric defined on P1 through the submersion
π1 : Ṁ → P1 is isometric with the canonical metric on the circle S1 restricted to P1. If
one introduces the concurrence by r = 2

√
det(CC∗), the metric takes the form of (5.15), like

(3.43). The distance between the separable states and the states of concurrence r is then given
by θ = 1

2 arcsin r .

6. Multi-qubit systems

6.1. Some of isotropy subgroups and orbits

The isotropy subgroups of G = U(2�) × U(2m) are determined by the types of singular
values. For simplicity, we here take up only three types of singular values such as (i) µ1 >

µ2 > · · · > µ2� > 0, (ii) µ1 > µ2 = · · · = µ2� = 0 and (iii) µ1 = µ2 = · · · = µ2� . The
singular decomposition of C is put in the form

C = UC0V
∗, (U, V ) ∈ U(2�) × U(2m), (6.1)

where

C0 = (�, 0), � = diag(µ1, . . . , µ2� ). (6.2)

Like (3.7), we obtain isotropy subgroups

GC0
∼=


U(1)×2� × U(2m − 2�), (i) µ1 > µ2 > · · · > µ2� > 0,

U(1) × U(2� − 1) × U(2m − 1), (ii) µ1 > µ2 = · · · = µ2� = 0,

U(2�) × U(2m − 2�), (iii) µ1 = µ2 = · · · = µ2� .

(6.3)

According to the above isotropy subgroups, we can obtain the orbits, in the same manner
as in subsection 5.2, as follows:

(i) U(2�) ×
U(1)×2� V2� (C2m

), (6.4)

(ii) S2�+1−1 ×U(1) S2m+1−1, (6.5)

(iii) U(2�) ×U(2�) V2� (C2m

) ∼= V2� (C2m

). (6.6)

Among the above, the second and the last ones are the sets of separable states and maximally
entangled states, respectively.
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6.2. Measurement of entanglement

We are interested in the principal stratum Ṁ which is the set of C whose singular values are
subject to µ1 > µ2 > · · · > µ2� > 0. Then, like (4.55) and (4.56), it turns out that

G\Ṁ ∼= P :=
x = (xj ) ∈ R2�

∣∣∣∣∣
2�∑

j=1

x2
j = 1, x1 > · · · > x2� > 0

, (6.7)

π : Ṁ −→ P ∼= G\Ṁ;C �→ µ(C) = (µj (C)). (6.8)

Like (4.57) and (5.11a), the horizontal subspace at C0 is given by

HC0 =
X = (A, 0) ∈ C2�×2m

∣∣∣∣∣A = diag(a1, . . . , a2� ), aj ∈ R,

2�∑
j=1

ajµj = 0

 , (6.9)

where � � m. Since the metric on Ṁ is invariant and under the G action, a metric on G\Ṁ is
defined, like (4.58), through

dσ 2(π∗X,π∗Y ) = 〈X, Y 〉C, X, Y ∈ HC. (6.10)

Since HC
∼= HC0 if C and C0 are sitting in the same G orbit, the metric on G\Ṁ is put in the

form

dσ 2 = tr(dC0 dC∗
0 ) =

2�∑
j=1

dµ2
j ,

1

2
tr(CdC∗ + dCC∗) =

2�∑
j=1

µj dµj = 0, (6.11)

which is the standard metric on the sphere S2�+1−1 restricted to P.
We take up the measure function F(C) defined in (2.8). As is easily verified, the range

of F is 0 � F(C) � ((2� − 1)/2�)2�

. In particular, the separable and the maximally entangled
states are assigned to the minimum and the maximum of F, respectively.

Since F is invariant under the G = U(2�)×U(2m) action, it projects to a function F̃ on P

through F̃ (µ(C)) = F(C). The set of separable states is mapped to e1 = (1, . . . , 0)T ∈ P by
π , which is located in the boundary of P. In what follows, we measure the distance between
e1 and the level set F̃−1(k) with 0 � k � ((2� − 1)/2�))2�

in a similar manner to that for
four-qubits. Since the metric on P ⊂ S2�+1−1 is the standard one, the distance between e1 and
x ∈ P is given by arccos(e1 · x) = arccos x1, so that the distance in question is determined
by minimizing arccos x1 on F̃−1(k) ⊂ P . In other words, our problem is reduced to solving
the problem

maximize x1 subject to
2�∑

j=1

x2
j = 1, F̃ (x) = k, (6.12)

where we do not take into account the restriction x1 � · · · � x2� � 0 for the time being.
Introducing Lagrange’s multipliers λ and µ, we consider the function

x1 + λ

 2�∑
j=1

x2
j − 1

 + µ
((

1 − x2
1

) · · · (1 − x2
2�

) − k
)
. (6.13)

By differentiation, we can find that necessary conditions for the above function to attain an
extremum are x2 = · · · = x2� , conditions satisfied on the boundary of P. When the extremum
occurs, one has x2

1 + · · · + x2
2� = x2

1 + (2� − 1)x2
2 = 1, so that

k = (
1 − x2

1

)(
1 − x2

2

)2�−1 = (2� − 1)x2
2

(
1 − x2

2

)2�−1
, (6.14)
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which determines x2 as a function of k. There are two solutions, x+
2 (k) and x−

2 (k), to the
above equation in general, where x+

2 (k) � x−
2 (k). For these values, we have x±

1 (k) =√
1 − (2� − 1)

(
x±

2 (k)
)2

. This implies that x−
2 (k) yields the maximum, x−

1 (k), of x1, so that
the distance is given by

arccos
√

1 − (2� − 1)(x−
2 (k))2, (6.15)

where x−
2 (k) denotes the smaller one of solutions to (6.14). In particular, if k =

((2� − 1)/2�))2�

, then x±
2 (k) = 2−�/2, and thereby equation (6.15) becomes arccos 2−�/2,

which provides the distance between the set of separable states and the set of maximally
entangled states.

6.3. The gradient vector of the measure function

To investigate the monotone of the measure F of entanglement, we wish to study the gradient,
∇F , of F. As is easily verified, with the constraint tr(CC∗) = 1 out of account, the differential
of F is given, for C ∈ Ṁ , by

dF = −F(C) tr((I − CC∗)−1(CdC∗ + dCC∗)). (6.16)

On account of the constraint tr(CC∗) = 1, the tangential component of dF to Ṁ is put in
the form dF + κ tr(CdC∗ + dCC∗), where κ ∈ R is a Lagrange multiplier. The gradient
vector ∇F should then take the form ∇F = −2F(C)(I − CC∗)−1C + 2κC. κ is determined
by the condition that ∇F be tangent to Ṁ, tr(C∗∇F + (∇F)∗C) = 0, which results in
κ = F(C)(tr(I − CC∗)−1 − 2�), so that one obtains

∇F = 2F(C)(−(I − CC∗)−1C + (tr((I − CC∗)−1) − 2�)C), C ∈ Ṁ. (6.17)

We can easily verify that ∇F is horizontal; C(∇F)∗ − (∇F)C∗ = C∗(∇F) − (∇F)∗C = 0.
To describe ∇F more explicitly, we have to evaluate tr(I − CC∗)−1. We here use the

singular decomposition C = UC0V
∗ with C0 = diag(µ1, . . . , µ2� ) and (U, V ) ∈ U(2�) ×

U(2m). Since U−1(I − CC∗)U = I − C0C
∗
0 , one has U−1(I − CC∗)−1U = (I − C0C

∗
0 )−1,

so that

tr((I − CC∗)−1) = tr((I − C0C
∗
0 )−1) =

2�∑
j=1

1

1 − µ2
j

. (6.18)

We here consider the function

Fλ(C) = det(λI − CC∗) = (
λ − µ2

1

) · · · (λ − µ2
2�

)
, (6.19)

where λ is a parameter. Taking the logarithm of this function and differentiating it with respect
to λ, we obtain

d

dλ
log Fλ(C) =

∑
j

1

λ − µ2
j

. (6.20)

It follows from (6.18) and (6.20) that

tr((I − CC∗)−1) = d

dλ
log Fλ(C)

∣∣∣∣
λ=1

=
d

dλ
Fλ(C)

Fλ(C)

∣∣∣∣
λ=1

. (6.21)
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In particular, ∇F is evaluated at C0 as

∇F(C0) = −2F(C0)diag

(
µ1

1 − µ2
1

, . . . ,
µ2�

1 − µ2
2�

)
+

(
2

d

dλ
Fλ(C0)

∣∣∣∣
λ=1

− 2�+1F(C0)

)
diag(µ1, . . . , µ2� ). (6.22)

Since

d

dλ
Fλ(C0)

∣∣∣∣∣
λ=1

=
2�∑

j=1

F(C0)

1 − µ2
j

, (6.23)

equation (6.22) turns out to be expressed as

∇F(C0) = 2F(C0)diag

(∑
j �=k

1

1 − µ2
j

− 2�

)
µk

 . (6.24)

Since ∇F(C) is horizontal, it projects to a vector field on the factor space G\Ṁ . From
(6.24), we obtain

π∗∇F(C0) = 2F̃ (µ)

( ∑
j �=k

1

1 − µ2
j

− 2�

)
µk

T

, k = 1, . . . , 2�, (6.25)

where µk are viewed as the Cartesian coordinates of R2�

. It is easy to verify that the right-
hand side of the above equation is tangent to P given in (6.7). We point out further that the
right-hand side of (6.25) is shown to be the gradient vector of the function F̃ (µ) on P with
respect to the canonical metric on S2�+1−1.

By solving the equation∑
j �=k

1

1 − µ2
j

− 2� = 0, k = 1, . . . , 2�, (6.26)

with the constraint
∑

µ2
j = 1, we find that the critical point of π∗∇F(C0) is given by

µj = 2−�/2, j = 1, . . . , 2�. This shows that π∗∇F(C0) has no critical points in P, but has a
critical point (2−�/2, . . . , 2−�/2)T in the boundary of P. It then turns out that F is monotone on
P in the sense that it has no critical points in P.

We now consider the flow defined by

dµk

dt
= 2F̃ (µ)

( ∑
j �=k

1

1 − µ2
j

− 2�

)
µk. (6.27)

The flow on P is approaching to (2−�/2, . . . , 2−�/2)T , one of boundary points of P, to which
maximally entangled states are mapped by π . Further, equation (6.27) is extended to
the boundary of P, and the boundary is invariant under the flow. For example, if µ1 =
µ2 > · · · > µ2� > 0, the condition µ1 = µ2 is shown to be invariant under the flow, and the
flow is approaching to the boundary point (2−�/2, . . . , 2−�/2)T . If µ1 > · · · > µ2�−1 > µ2� =
0, the flow is approaching to a boundary point (2−(�−1)/2, . . . , 2−(�−1)/2, 0)T .

6.4. A summary of section 6

Theorem 4. With respect to the bipartite partition (C2)⊗n ∼= C2� ⊗C2m ∼= C2�×2m

of an n-qubit
system with n = � + m, � � m, the sets of separable states and maximally entangled states
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form submanifolds given by (6.5) and (6.6), respectively. The function F(C) = det(I − CC∗)
defined on the state space serves as a measure of entanglement, which attains the minimal
and maximal values on the sets of the separable and maximally entangled states, respectively.
The measure function F is monotone in the sense that F has no critical points in the principal
stratum Ṁ . The orbit space G\Ṁ for the principal stratum is diffeomorphic with an open
submanifold P of S2�+1−1, as is given in (6.7) and (6.8), and the Riemannian metric defined on
P through the submersion π : Ṁ → P is isometric with the canonical one on S2�+1−1 restricted
to P. F projects to a function F̃ on P, which is continuously extended to the boundary of P.
With respect to the metric on P, the distance between the set F̃−1(0) and the set F̃−1(k) with

0 � k �
(
(2� −1)/2�)

)2�

is given by (6.15), which then implies that the state C with F(C) = k

is distant from the separable states by the amount given in (6.15).

As long as the sets of separable states and maximally entangled states and the distance are
concerned, this theorem covers the results in the preceding sections. In particular, if � = 1,
the amount given in (6.15) is equal to 1

2 arcsin r with r = 2
√

det(CC∗) = 2
√

k.

7. Concluding remarks

We make remarks on invariants for U(2�) × U(2m) action. For A = (aij ) ∈ C2�×2�

, the
characteristic polynomial det(λI − A) is expanded into

det(λI − A) =
2�∑

k=0

(−1)kϕk(A)λk, (7.1)

where ϕ0(A) = det A and ϕ2�−1(A) = tr A, in particular. ϕk are known as invariants
for the GL(2�, C) action, A �→ gAg−1, g ∈ GL(2�, C). We take A = CC∗ in (7.1).
Since det(λI − CC∗) is invariant under the U(2�) × U(2m) action, C �→ gChT , (g, h) ∈
U(2�) × U(2m), the coefficients, ϕk(CC∗), of λk are invariant as well. Thus we have 2�

non-trivial invariants, ϕk(CC∗), k = 0, . . . , 2� − 1, with respect to the U(2�) × U(2m) action.
Two of ϕk(CC∗) are ϕ0(CC∗) = det(CC∗) and ϕ2�−1(CC∗) = tr(CC∗). The function F(C)

we have worked with in this paper is expressed, in terms of these invariants, as

F(C) = det(I − CC∗) = det(CC∗) − ϕ1(CC∗) + · · · + ϕ2�−2(CC∗), (7.2)

where we have already taken into account the constraint ϕ2�−1(CC∗) = tr(CC∗) = 1.
We make further comments on W-states and GHZ-states. For a three-qubit system, the

GHZ-state and W-state are given by and belong to

1√
2
(|000〉 + |111〉) ∈ M2, (7.3)

1√
3
(|001〉 + |010〉 + |100〉) ∈ M1, (7.4)

respectively. This means that the GHZ-state is maximally entangled with respect to
(C2)⊗3 ∼= C2 ⊗ C4, but the W-state is not. For a four-qubit system, we have two bipartite
partitions. With respect to (C2)⊗4 ∼= C2 ⊗ C8, the GHZ-state and W-state are given by and
belong to

1√
2
(|0000〉 + |1111〉) ∈ M2, (7.5)

1
2 (|0001〉 + |0010〉 + |0100〉 + |1000〉) ∈ M1, (7.6)

respectively, where M2 and M1 are the sets of states with µ1 = µ2 = 1/
√

2 and with
µ1 > µ2 > 0, respectively. Equations (7.5) and (7.6) mean that the GHZ-state is maximally
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entangled, but the W-state is not. In contrast with this, with respect to (C2)⊗4 ∼= C4 ⊗ C4, one
has

1√
2
(|0000〉 + |1111〉) ∈ M7, (7.7)

1
2 (|0001〉 + |0010〉 + |0100〉 + |1000〉) ∈ M7, (7.8)

where M7 denotes the set of C with singular values such that µ1 = µ2 > µ3 = µ4 = 0.
This means that neither the GHZ-state nor the W-state is maximally entangled with respect to
(C2)⊗4 ∼= C4 ⊗ C4.

In conclusion, we remark on bipartite and multipartite partitions. Though we have fixed
� and m in partitioning the n-qubit, there are many bipartite partitions of the n-qubit, if � and
m are not fixed. If � and m are varied under the condition � + m = n, we have a variety of
sets of separable states and maximally entangled states, according to the variation of bipartite
partitions. We could have started with a multi-partite partition C2 ⊗ · · · ⊗ C2 with local
transformation group U(2) × · · · × U(2) and other types of partitions. In this line of thought,
we would like to refer to [15–23]. In particular, the space of the three-qubit entanglement
types, S15/(U(2) × U(2) × U(2)), is identified in [21].
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